Table 2. @RISK simulation model and scenario for calculation of the risk of Vibrio parahaemolyticus foodborne illness by consumption of Jeotgal

Input model Variable Formula Reference
Product
 Pathogen contamination level
  V. parahaemolyticus prevalence PR = RiskBeta(1,91) This study; Vose, 1997
  Concentration (CFU/g) C = –LN (1 – PR) / 25 g Sanaa et al., 2004
  Initial contamination level (Log CFU/g) IC = Log(C)
Market
 Market transportation
  Transportation time (h) Mark-timetrans = RiskPert(4,5,7) Personal communication1)
  Food temperature during transportation (°C) Mark-Temptrans = RiskWeibull(1.3219,2.8404,RiskShift(3.1093),RiskTruncate(1,40)) Personal communication
 Death
  Treatment time for the first decimal reduction δ = 1 / (0.0718 – 0.0097 × Mark-Temptrans + 0.0005 × Mark-Temptrans2) This study
  Curve shape parameter ρ Fixed 0.6158 This study
  V. parahaemolyticus survival model C1 = IC – (Mark-timetrans / δ)ρ Mafart et al., 2002
 Market storage
  Storage time (h) Mark-timest = RiskUniform(0.17,0.5) Personal communication
  Food temperature during storage (°C) Mark-Tempst = RiskUniform(0,10) Personal communication
 Death
  Treatment time for the first decimal reduction δ = 1 / (0.0718 – 0.0097 × Mark-Tempst + 0.0005 × Mark-Tempst2) This study
  Curve shape parameter ρ Fixed 0.6158 This study
  V. parahaemolyticus survival model C2 = C1 – (Mark-timest / δ)ρ Mafart et al., 2002
 Market display
  Display time (h) Mark-timedis = RiskPert(0,720,4320) Personal communication
  Display temperature in market (°C) Mark-Tempdis = RiskUniform(2.2281,20.272) Personal communication
 Death
  Treatment time for the first decimal reduction δ = 1 / (0.0718 – 0.0097 × Mark-Tempdis + 0.0005 × Mark-Tempdis2) This study
  Curve shape parameter ρ Fixed 0.6158 This study
  V. parahaemolyticus survival model C3 = C2 – (Mark-timedis / δ)ρ Mafart et al., 2002
Home
 Home storage
  Storage time (h) Home-timest = RiskUniform(0,720) Personal communication
  Food temperature during storage (°C) Home-Tempst = RiskLogLogistic(–29.283,33.227,26.666,RiskTruncate(–5,20)) Lee et al., 2015
 Death
  Treatment time for the first decimal reduction δ = 1 / (0.0718 – 0.0097 × Home-Tempst + 0.0005 × Home-Tempst2) This study
  Curve shape parameter ρ Fixed 0.6158 This study
  V. parahaemolyticus survival model C4 = C3 – (Home-timest / δ)ρ Mafart et al., 2002
Consumption
 Daily consumption average amount (g) Consump = RiskPareto(0.60284,1.32,RiskTruncate(0,155)) KCDC, 2018
 Daily consumption frequency (%) ConFre Fixed 0.8 KCDC, 2018
 Daily non-consumption frequency (rate) CF(0) = 1 – 0.8 / 100 KCDC, 2018
 Daily consumption frequency (rate) CF(1) = 0.8 / 100 KCDC, 2018
 Distribution for consumption frequency CF = RiskDiscrete ({0,1},{CF(0),CF(1)}) KCDC, 2018
 Daily consumption average amount considered frequency Amount = IF(CF = 0,0,Consump) KCDC, 2018
Dose-response
V. parahaemolyticus amount (CFU) D = 10C4 × Amount
 Parameter α Fixed 0.17 FAO & WHO, 2011;Iwahori et al., 2010
 Parameter β 1.18 × 105 FAO & WHO, 2011;Iwahori et al., 2010
Risk
 Probability of illness/person/day Risk =1 – (1 + D / β) FAO & WHO, 2011;Iwahori et al., 2010
Personal communication with a person in charge of products at the market.
IC, initial contamination level; C1, market transportation; C2, market storage; C3, market display; C4, home storage.